The remainder when 3x2+2x−63x^2+2x-63x2+2x−6 is divided by (2x−1)(2x-1)(2x−1)
The value of p if px4+7x2−18px^4+7x^2-18px4+7x2−18 is divisible by (x−3)(x-3)(x−3)
The expansion of (5x−1)2(5x-1)^2(5x−1)2 is
Factors of 81x4−2581x^4-2581x4−25 are
103×97103\times97103×97 =
(P2+2)(P^2+2)(P2+2) (P2−2)(P^2-2)(P2−2) =
(2x+3y+4z)2(2x+3y+4z)^2(2x+3y+4z)2 =
1023102^31023 =
x3−y3x^3-y^3x3−y3 =
(−12)3+(8)3+(4)3(-12)^3+(8)^3+(4)^3(−12)3+(8)3+(4)3 =