3\sqrt33 Tan θ\thetaθ = 1, then θ\thetaθ =
In a △ABC\triangle ABC△ABC if ∠B\angle B∠B = 90° and Tan C = 512\frac{5}{12}125 , then the length of the hypotenuse is
Tan260∘+4Cos245∘+3Sec230∘+5Cos290∘=Tan^2 60^\circ + 4 Cos^2 45^\circ + 3 Sec^2 30^\circ + 5 Cos^2 90^\circ=Tan260∘+4Cos245∘+3Sec230∘+5Cos290∘=
Sec227∘−Cot263∘=Sec^2 27^\circ-Cot^263^\circ=Sec227∘−Cot263∘=
1Sec2θ+Sin2θ+1Tan2θ=\sqrt{\frac{1}{Sec^2 \theta} + Sin^2 \theta + \frac{1}{Tan^2 \theta}} =Sec2θ1+Sin2θ+Tan2θ1=
Sin2θ(1+Cot2θ)=Sin^2 \theta (1 + Cot^2 \theta) =Sin2θ(1+Cot2θ)=
If A = 45°, then (1+TanA)(1+Tan2A)(1+Tan3A)(1 + Tan A) (1 + Tan^2 A) (1 + Tan^3 A)(1+TanA)(1+Tan2A)(1+Tan3A) =
Sin2θ.Cot2θ+Cos2θ.Tan2θ=Sin^2 \theta . Cot^2 \theta + Cos^2 \theta . Tan^2 \theta =Sin2θ.Cot2θ+Cos2θ.Tan2θ=
Tan 45∘+2 Tan260∘=Tan\,45^\circ+2\,Tan^260^\circ=Tan45∘+2Tan260∘=
Sin 2A = 2 Sin A, then ∠A\angle A∠A =